BIM-basierte Ökobilanzierung

Lukas Röder

BIM, Digitalisierung & Innovation

Zert. Trainer, buildingSMART AT

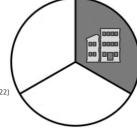
Kontakt: l.roeder@acht.at

www.acht.at

Über uns

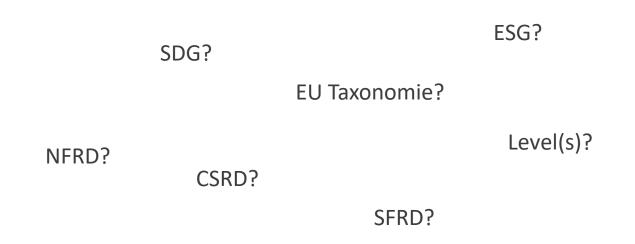
Entwicklungspartner für Innovation im Bauwesen

- + Statik + Konstruktion
- + Consulting
- + Digitalisierung


Umweltwirkungen des Bau- und Gebäudesektors

Energieverbrauch: 35% des globalen Energieverbrauchs (UN 2020)

Treibhausgaspotential: 37% der globalen energiebedingten THG-Emissionen (Le Den et al., 2022)


Abfall:

in der EU sind rund 1/3 des gesamten Abfallaufkommens Bau- und Abbruchabfälle

=> größter Abfallstrom nach dem Volumen

(Eurostat 2018)

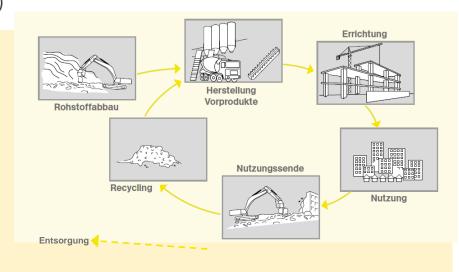
Änderungen Rechtslage – was erwartet uns?

→ Frühzeitiger Nachweis der Einhaltung von Nachhaltigkeitskriterien

Ökobilanzierung

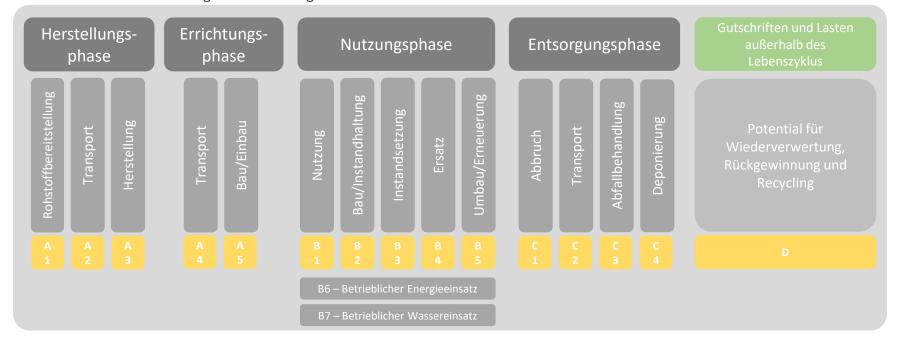
auch Lebenszyklusanalyse ("Life Cycle Assessment" - LCA)

Quantifizierung von Umweltauswirkungen



Betrachtung des gesamten Lebensweges

Ökobilanzierungen von Gebäuden


- Zunehmend zur Bewertung der Umweltleistung von Gebäuden eingesetzt
- Genormte Vorgehensweise bei der Durchführung nach ÖNORM EN 15978
- Auf Basis von EPDs (ISO 14025)

Lebenszyklusperspektive im Bauwesen

Lebenswegmodule eines Gebäudes

Module für die Beschreibung und Bewertung eines Gebäudes nach EN 15978

Ökobilanzierung von Gebäuden

Warum werden Ökobilanzen **aktuell** durchgeführt bzw. zu welchem Zeitpunkt im Projekt geschieht dies idR?

Zu welchem Zeitpunkt in einem Projekt wäre eine Ökobilanz sinnvoll?

In der frühen Planungsphase, um auch schon in der Ausschreibungsphase Vergleiche ziehen zu können

Warum werden Ökobilanzierungen nicht schon in der frühen Planungsphase durchgeführt?

Aufwand Auswirkung von Entscheidungen Planung Ausführung / Vergabe Betrieb Möglichkeiten der Einflussnahme **Kubatur und Ausrichtung** Energieträger Energieausweis realisiertes Rohbau und Konstruktion Bodenbeläge Gebäude Gesamtenergiebedarf **Fassadendetails** Herstellerspezifische Fassade Innenwanddetails verwendete Daten Innenwände Rezepturen Decken und Bodenbeläge

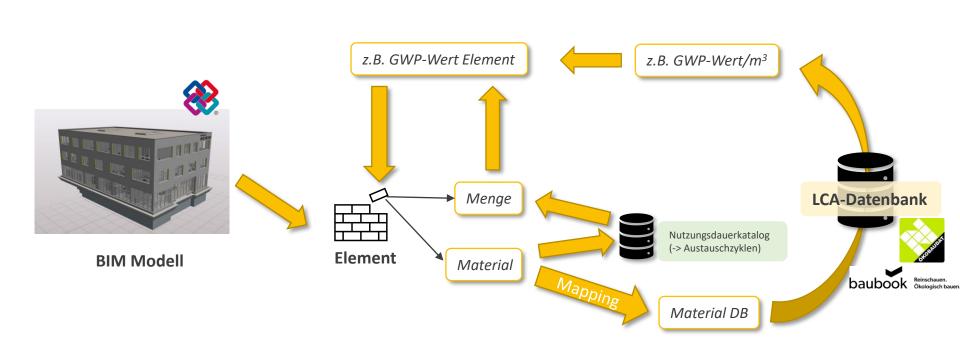
Verändert übernommen aus: Leitfaden zum Einsatz der Ökobilanzierung, DGNB (2018)

Ausgangslage

Hoher Anteil des Gebäude- und Bausektors an den Gesamt-Treibhausgasemissionen

Änderung der Rechtslage bezüglich Nachhaltigkeit von Gebäuden (EU-Taxonomie, etc.)

Bilanzierung der CO₂-eq-Emissionen über den kompletten Lebenszyklus eines Gebäudes bereits in der Entwurfsphase

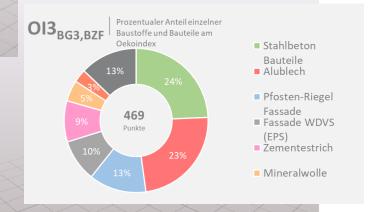


Zeitaufwand und Komplexität einer Ökobilanzierung von Gebäuden

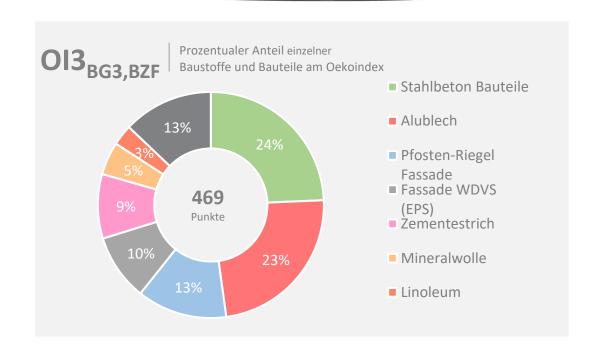
BIM-basierte Ökobilanzierung

BIM-basierte Ökobilanzierung

Tool


File View Camera QuickActions

Analysis

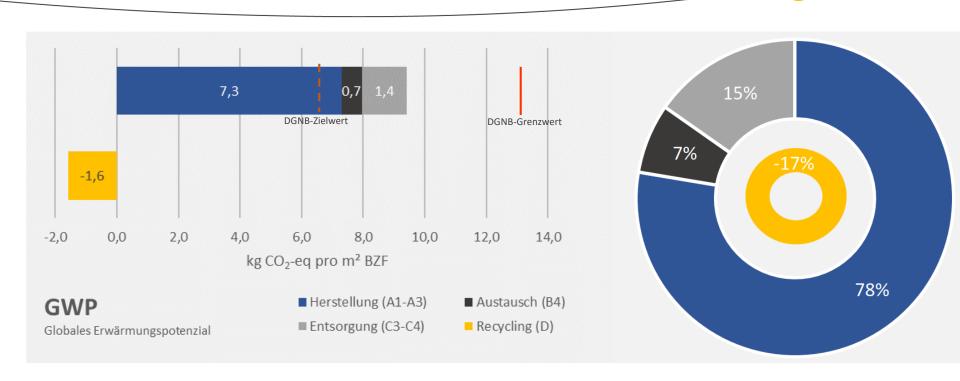

Varianten Verknüpfungen Vi

Analysis ModelObject Spatial view Properties

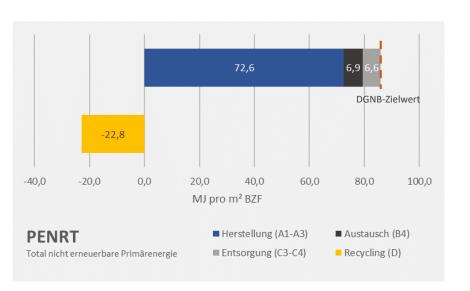
ZEIGE UNVERKNÜPFTE ELEMENTE Extra Volumen zeigen				
Userr	egeln: +			
	TYP N	AME ZIEL VERKNÜ	PFUNG VOLUMEN	
Autor	egeln: 🏚 🕆	•		
	ACTIVE	MATERIAL	ZIEL VERKNÜPFUNG	
0	✓	Aluminium	Aluminium-Extrusionsprc	
0	✓	Ausbauplatte GKB	Rigips Bauplatte RB - 18 mm (800 kg/mr u. 14,4 kg/m _s)	98.403
0	✓	Ausbauplatte GKBI	Rigips Bauplatte impr. RBI - 12,5 mm (760 kg/mł u. 9,5 kg/m _s)	8.618
0	✓	Beton, unbewehrt	Porenbeton P2 04 unbewehrt (m3)	3.358
0	✓	Brandriegel	Tondachziegel, Initiative Ziegel Österreich	3.707
0	✓	Edelstahl	1kg gewindefurchende Edelstahlschraube	6.733
0	V	EPS	eps	18.72
0	✓	Estrich	1 m, WDVS, EPS geklebt, mit 160 mm Dämmstoffdicke, 13,8 kg/m,	784
0	✓	Fliesen weiß	1 m, WDVS EPS geklebt und gedübelt, mit 160 mm Dāmmstoffdicke, 14,1 kg/m,	, 17
•	✓	Folie	1 m, WDVS EPS mit Schiene, geklebt und gedübelt, mit 160 mm Dämmstoffdicke, 10,9 kg F 1m3 EPS-Hartschaum Strahlungsabsorber	J/M,
0	✓	Geländer	g 1m3 EPS-Hartschaum W/D-035	5
0	<u>✓</u>	Gipsputz	1m3 EPS-Hartschaum B/P-035	97
_	<u>~</u>		1m3 EPS-Hartschaum W/D-040	
0	✓	GK-Abhängung	1m3 EPS-Hartschaum B/P-040	.346
0	✓	GK-Profile	Isospan 2 Holzbetonmantelsteine mit EPS-Dämmung SILVER S 36,5/10,5 ohne Füllbeton	n 17
(]				

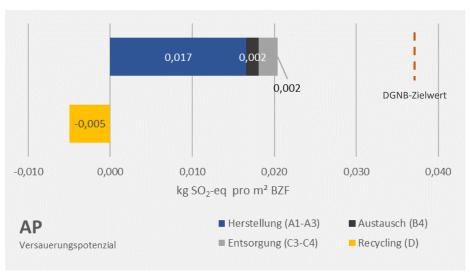
Beispiel Oekoindex

 $O13_{BG3,BZF} < 300$ Punkte

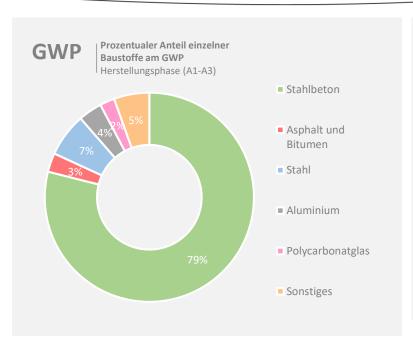

= "hervorragende Ökoeffizienz"

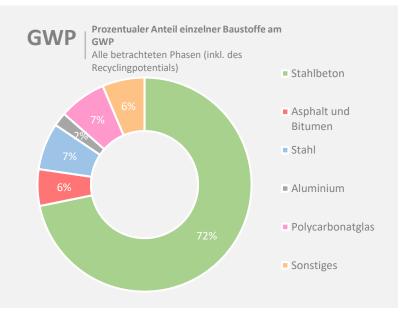
 $O13_{BG3,BZF} < 800 Punkte$


= Mindestanforderung


^{*} gemäß OI3-Berechnungsleitfaden (Version 4.0)

Beispiel DGNB




Beispiel DGNB

Auswirkung der betrachteten Phasen

Ausblick

Wettbewerbsvorteile

Zunehmende Komplexität

Frühere Variantenvergleiche

Neue Bauprodukteverordnung

Fazit

Zielgerichtete Ökobilanzierungen in Bauprojekten

Abhängigkeit von Datengrundlagen & Standards

Technologie ist vorhanden

Synergien: LZK, Energetische Betrachtungen, Materielle Gebäudepässe

Literaturverweise

Le Den, Xavier, Steinmann, Jacob, Röck, Martin, Birgisdottir, Harpa, Horup, Lise Hvid, Tozan, Buket, & Sørensen, Andreas. (2022). Towards embodied carbon benchmarks for buildings in Europe - Summary report. Zenodo. https://doi.org/10.5281/zenodo.6397514

UN. 2020. "2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector". Nairobi, Kenya.

Features

BIM-Viewer (IFC)

Visuell unterstütztes Mapping (Modellinformationen -> LCA Datenbank)

Flexible Anbindung von Datenbanken (EPDs, Nutzungsdauern etc.)

Umfangreiche Filter- und Suchoptionen

Ergebnisexport als Liste (z.B. GWP phasenbezogen) /IFC Parameter

Logische Regeln für Verknüpfungen

Ergebnisvisualisierung (Impact)

Kontrollfunktionen

Speicherung von Mappings

Reparatur und Erweiterung von Datenbankeinträgen